
 

 

Finding relationship gold in big data mines 

One of the most common user tasks when working with tabular data is identifying 
and quantifying correlations and associations. Fundamentally, if two measures are 
associated, we have the opportunity for relationships to exist, and insight to be 
garnered. 

To find an association, we start by calculating what the data would look like in the 
absence of any pattern. That is, we determine the ‘expected’ number of counts in 
each cell, based on a simple assumption that the values are distributed 
homogeneously.   

Associations will manifest as unexpected ‘patterns’ in the data: cells (or groups of 
cells) that are significantly higher (or lower) than expected. 

There are a number of statistical tests that can be applied to tables to ask questions 
such as: 

 Do the cell values differ from the homogeneous base case?  

 Is there a pattern? 

 How strong is the pattern? 

For the end-user to glean 
understanding, we require a 
simple but robust mechanism to 
assess these questions. A positive 
result on a test for existence is 
merely based on the statistical 
likelihood of seeing such an 
association appear in the data by 
random chance. The strength of 
an association relates to the   
statistical effect size, and can be   
considered (to some extent) the   
predictability of the associative outcome.  

This white paper describes the new ColourMatrix feature available in SuperCROSS 9.0.  

It outlines the methodology used to identify and cluster associations in dynamic cross tabulations.  

ColourMatrix is a brand new SuperCROSS 
feature. It replaces ColourVIEW, which was 
available in previous SuperCROSS releases. 

ColourVIEW was based on an Expectation 
Ratio: each cell value was divided by the 
expected cell value to determine how far it 
deviated from the expectation. However, this 
algorithm did not take into account the size of 
deviation from the expectation. 

For example, having a value of 3 in a cell 
when expecting 2 (an overestimation of 1 
unit) was given the same score as having an 
excess of 250 when expecting 500 (an over 
representation of 50% or an expectation ratio 
of 1.5). If there were an expectation of 750 
and 500 were encountered then the 
expectation ratio would be 0.66. The 
relationship between these two differences is 
not readily apparent. 

The new algorithm retains the simple, visual 
interface while being much easier to interpret 
and providing much more information about 
the size of any over or under representation. 

It also conforms to simple, well documented 
statistical rules. 
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The ColourMatrix algorithm is based on the χ2 (“kye squared”) test for homogeneity and independence. As this test is only uni-
directional (it does not reflect under or over representation in the table), it is supplemented with a variant of analysis of standardised 
residuals (Haberman, 1973). 

The ColourMatrix algorithm is based on the following assumptions: 

 Tables consist of categorical/nominal (frequency) data in mutually 
exclusive categories. 

 The data represents a random sample of n independent observations. 

 The expected frequency in each cell is 5 or greater.  

The algorithm first calculates the expected values for each cell (under the 
assumption of a completely homogeneous set). 

It then undertakes three key statistical tests and provides the following feedback: 

 Cells are coloured to indicate how close they are to the expected value. 

 If the user selects the Cluster option, then the table is reordered to group together cells with similar levels of deviation. 

 Textual results are provided for the tests for association existence (using the χ2 test) and the measure of association 
strength (using Cramer’s φ', with Cohen’s w as benchmarked values). 
 

Notation 

This white paper uses the following notation to convey 
techniques: 

 f represents a cell count, with the 
dimensionality of the resident cube dictated 
by the number of subscripts. For example, fij 
comes from a 2-dimensional cross tabulation 
of i rows and j columns; whereas fijk has i 
rows, j columns, and k wafers.   

 The marginals (totals and subtotals) are 
denoted by a dot in the relevant subscript. For 
example: 

 f.j is the jth column total. 

 fi.. is the wafer total of the ith row. 

 f… is the grand total of a 3 dimensional data 
cube. 

  

Algorithm Overview 

 

The third assumption is the subject of much 
debate in the community. How conservative 
(and stringent) should this assumption be?  

Fundamentally, the association tests here rely 
on a smooth approximation to what is, in fact, a 
discrete distribution. Generally, an expectation 
of 5 or greater ensures that this approximation 
is acceptable. If cells have a lower expectation 
than 5, the chi-squared distribution of 
probabilities may not provide a truly accurate 
representation. 

Examples 

Table 1: Example notation of an r x c table. 

f11 f12 f13 f14 f15 f1. 

f21 f22 f23 f24 f25 f2. 

f31 f32 f33 f34 f35 f3. 

f.1 f.2 f.3 f.4 f.5 f.. 

Table 2: Generalised r x c cross tabulation notation. 

fij fi. 

f.j f.. 

 



 
 
 
 
 

 
 

The Expected Value 

Association is naturally expressed between only two 
variables. As such, examples are often based on a 2-
dimensional cross table. Yet this ignores the natural 
hierarchy in modern data storage systems: the data cube. 
A data cube is essentially a series of cross-tables (wafers) 
layered on top of each other. 

Describing the meaning of an association within a single 
layer is simple: an association is between the variable 
represented by the rows and the columns. However, 
describing the meaning of an association within a cube 
can be problematic.  

It might be between the rows and columns with the 
wafer irrelevant. It might be between the column and the 
row/wafer. It could be weak, but across all three, or 
strong but only between two variables. As such, 
“strength” can lose meaning across cubes. 

 

Standardised Residuals 

Armed with an expectation value, we can generate a data 
cube of the same dimensions as the original cube, and 
propagate it with expressions for the deviation of the 
data, from the expectation. For each cell, the rule for this 
is 

𝑍𝑖𝑗 =
(𝑓𝑖𝑗 − 𝐸𝑖𝑗)

√𝐸𝑖𝑗

 

This form is selected for a number of specific reasons: 

 It will be standardised. 

 It is negative for values that are less than 
expected, and positive for values that are over-
represented. 

 It is symmetric, and centred on zero. 

 It is interpretable, in that the standardisation 
means that an independent selection of these 
values will conform to a Z-distribution. 

Clustering the Table 

The standardised residuals are configured such that any group should have a net sum of zero. Taking each wafer, row or column in 
turn, we can produce a measure of that sum as a metric. Those that are positive are generally over-represented in the set, while a 
negative score suggests under-representation. When a user selects the Cluster option, SuperCROSS automatically reorders the 
wafers, rows and columns to place the most positive scores in the upper left corner, generating further insights into the potential 
underlying association.  

Calculating the Expected Cell Value 

Under an assumption of no association, either homogeneity or 
independence, the expected cell value (Eij) is deduced from the 
relevant row, column, and wafer totals: 

𝐸𝑖𝑗 =  
𝑓𝑖.

𝑓. .

𝑓.𝑗

𝑓. .
𝑓.. 

This relationship is expressed in a way to highlight its construction 
from simple joint probabilities. To extend to cubes (and 
dimensionally beyond), we can use the simple generalisation: 

𝐸𝑖𝑗𝑘 =  
𝑓𝑖. .

𝑓 …

𝑓.𝑗 .

𝑓 …

𝑓. .𝑘
𝑓 …

𝑓 … 

The ColourMatrix algorithm uses this to generate the expected cell 
counts for a cube that will match the top two aggregated dimensions 
(i.e. grand total and wafer totals for cubes, grand total and 
row/column totals for cross tables will be satisfied identically). 

Colouring the Cell 

The standardised residual for each cell is used to colour the cell.  

The colour is based on standard statistical interpretation of the 
number.  

Typical values for the Z standardised variables are as follows: 

 They will average 0 

 The modal value will be 0.0 

 50% will be positive, 50% will be negative. 

 ~70% will be between (-1,1) 

 ~95% will be between (-2, 2) 

 less than 1% will be outside (-2.6,2.6) 

These relationships are well known, and can be derived directly via 
numerical function, or through the use of look-up tables. In the same 
way, the probability of exceeding values (p-values) can readily be 
derived across an entire cube. 

Expected Cell Values 

 



 
 
 
 
 

 
 

Is there an Association? 

If there is genuinely no association across the variables, then the 
standardised residuals can be assessed as a master set with 
predictable outcomes. The sum of their squares will conform to a 
χ2 distribution with the relevant degrees of freedom: 

Χ2 = ∑
(𝑓𝑖𝑗 − 𝐸𝑖𝑗)

2

𝐸𝑖𝑗

= ∑ 𝑍𝑖𝑗
2   

To test the existence of a possible association, we attempt to 
reject the possibility that a value could be as large as it is under 
chance alone. While we do not expect that every value in every 
cell will precisely match the expectation, each cell should be 
within the noise of the expectation. We also understand how an 
aggregate of squared Z distributed values should be distributed 
according to a χ2 distribution. The critical value is the χ2 value for 
the relevant degrees of freedom.  

𝛸𝑡𝑎𝑏𝑙𝑒
2 < 𝛸𝑐𝑟𝑖𝑡

2 = 𝛸𝐷𝑜𝑓
2  

The degrees of freedom relate to the construction of the cube 
and its ability to maintain the relevant and required marginal 
totals. If the amount of deviation we measure is less than this 
critical value, then there is no evidence to suggest that the table 
is significantly different to the one we would expect to see if 
there were no association between variables. 

For a cross tabulation, the degrees of freedom is given by 

𝐷𝑜𝐹2𝐷 = (𝑟 − 1)(𝑐 − 1) = 𝑟𝑐 − 𝑟 − 𝑐 + 1 

where r is the number of rows, and c the number of columns. For 
a cube this becomes 

𝐷𝑜𝐹𝑐𝑢𝑏𝑒 = 𝑟𝑐𝑤 − 𝑟 − 𝑐 − 𝑤 + 2 

where w is the number of wafers. 

This can be generalised to N dimensions as 

𝐷𝑜𝐹𝑁 = 𝛱 𝑛𝑖 − 𝛴𝑛𝑖 + 𝑁 − 1 

where N is the dimensionality of the cube, and ni are the sub-dimension counts. 

For the Z values, there are calculations and look-up tables for determining the critical values of χ2, and reporting the likelihood of 
such a combination of residuals arising by chance (p–values).  

Given a statistical likelihood that a χ2 value should arise, if it is deemed likely that there is a true association within the cube or table 
then the standardised residuals guide the analysts in finding cause for why (or where) we were compelled to reject the hypothesis 
that there was no association within the table. The largest absolute residual values contribute the most to the finding of an 
association.  

Testing the Association 

 
How Strong is the Association? 

Modern data tools are designed to move and display large 
volumes of data. Consequently, they are capable of 
resolving very small effects to great statistical significance. 
It is therefore important to determine the potential size or 
strength of any detected association.  

The use of a χ2 value needs in some way to be corrected for 
the volume of data involved, determining strength. When 
there are only two variables at hand, the greatest 
association can be easily visualised (it is when all the data 
resides on the diagonal). We can go further than this, and 
deduce the maximum value that a χ2 statistic can be for a 
given table. Scaling our determined metric by this value 
gives us a standardised metric of association strength. 

This is known as Cramer’s φ' (or φ C) 

𝛷𝑐 = √
𝛸2

𝑛(𝑘 − 1)
 

where k is the smaller of the number of columns or rows 
and n is the total, independent contributor count. This 
value depends on the size and shape of the original table. 
To some extent it can be standardised by reporting Cohen’s 
w. 

𝑤 = 𝛷𝑐√(𝑘 − 1) 

There is an accepted range for w, as follows 

Effect Size Range (w) 

Small 0.1≤w<0.3 

Medium 0.3≤w<0.5 

Large 0.5≤w 

 



 
 
 
 
 

 
 

Healthcare Case Study 

To demonstrate the power of the ColourMatrix feature, here is a 
sample cross tabulation of healthcare data, based on a table of 
patients who present with a single disease, tabulated against their 
age group. 

Using the formulas above, it is possible to deduce that an 
association exists to better than 99% confidence (χ2 = 96.98 > χ2

crit 
=43.77).  

Based on this calculation, if there were no association then 99% of all permutations of this particular table would have a measured χ2 
value of less than 43.77. Therefore we conclude that, if there were no association, it is exceedingly unlikely we would see such a 
table.  

The φ' value is 0.11, which for a table such as this corresponds to a “small” association (Cohen’s w = 0.25). So we can be confident 
that a small magnitude association exists. 

Instead of manually calculating these values, SuperCROSS users can activate ColourMatrix to see a visual representation: 

 

Here, the darkest red and blue colours represent over and under representation outside the 95% confidence. Note how they are not 
related to their absolute values. For example, we can see that younger patients are over represented in hospitalisations, that angina 
appears to be loosely correlated with aging, as is high blood pressure. There is an unusual spike in stroke patients at age 61-65. 

Users can also click the 
Cluster option. SuperCROSS 
automatically rearranges the 
table to highlight potential 
groups to the analyst. 

In this example, high blood 
pressure has been grouped 
with angina and stroke. In these diseases, the under 60 year olds are underrepresented, and patients ages 60+ are over represented. 

If we look at the age groups there are 2 or 3 clusters appearing. 36-40 
year olds are underrepresented in angina and high blood pressure, yet 
over represented in hospitalisations. Similarly, 61-70 year olds are 
underrepresented in hospitalisations and high cholesterol, but over 
represented for stroke, angina and high blood pressure. There is an 
interesting pocket of 46-50 year olds who exhibit high cholesterol, which 
appears to rectify with age (or treatment). 

SuperCROSS also displays information about the strength of the 
association. In this case an association is likely, but it is a small 
association:  

 

Case Study 

 

 

 

 


